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Solving the Chapman-Kolmogorov equation for a jumping process
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A general solution to the Chapman-Kolmogorov equation for a jumping process called the “kangaroo
process” is derived. A special case of algebraic dependences is discussed in detail. In particular, simple
asymptotic formulas for probability distribution are presented. It is demonstrated that there are two different
classes of limiting stationary distributions. An expression for the covariance is also derived.
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[. INTRODUCTION cesses and it can produce probability distributions with vari-
ous shapes and possessing various forms of the covariance.
It became clear in recent years that a stochastic descrip- In this paper, we consider a special form of the jumping
tion of many physical phenomena requires a more genergirocess called the kangaroo proc€s®) [17]. It is a step-
class of stochastic processes than the white noise, possessinige constant Markov process defined for infinitesimal time
no correlations and being Gaussianly distributed. Long-timeintervals by the following stationary transition probability:
algebraic covariances appear in the fluid dynanfits3],
linearized hydrodynamic§4], for the noise-induced Stark  Pu(XAt],x",0)=[1=v(x")At]&(x" —x)+ v(x") AtQ(X),
broadening phenomend®]. Moreover, if one tries to de- 3
scribe a complicated dynamical system in terms of a sing|
effective variable and some noise responsible for fluctua
tions, that noise must be correlatgg)7]. The Brownian par-
ticle trajectory is given in this case by the generalized Lange:
vin equation in which the stochastic force must be
represented by a process possessing final correlation tim
On the other hand, there are strong indications of non-
Gaussian noises appearances in naf@&;6]; the algebra-
ically distributed noise serves to generatevy dlights as a
driving force in the Langevin equatiofl0]. Similarly, the
fractional Fokker-Planck equation corresponds to nonline
Langevin equation driven by non-Gaussian ngikH.
Emergence of these phenomena emphasizes the impor- 4
tance of stochastic processes that possess a general form of —-p(X,t)=— V(X)D(X,t)+Q(X)j v(x")p(x’,t)dx
covariance and arbitrary distribution shape, not necessarily

SwvhereQ(x) is the given probability density aneg(x) is the
Jump frequency. Thereforgy,, dx means the probability that
KP value is betweer andx+dx at timeAt, knowing that it
was equal ta’ at time 0. The first term on the right-hand
side of Eq.(3) is the probability that no jump occurred in the
fime interval (OAt). The termyp(x’)At means the probabil-
ity that one jump occurred. Directly after such a jump, the
probability density ofx becomefQ(x). To get the CKE for
KP, we insert the transition probabili{) into Eq.(1). One
can verify that both coefficientd andB vanish and CKE is
a{ully determined by the integral component. It takes the form

Gaussian. Such processes can still be Markovian and satisfy @
the forward Chapman-Kolmogorov equatit®KE) [12]: KP is a stationary Markov process; it is characterized by
some stationary probability distribution, not necessarily
d 3 Gaussian, and it can possess an arbitrary covariance. In ad-
TP ==~ [AXHP(X,H]+ E[B(x,t)p(x,t)] dition, there exists a simple procedure allowing us to con-

struct a KP if those quantities are givanpriori [17]. This

fact makes the KP very useful for applications, e.g., as a
+f dx' [W(x|x",t)p(x",1) model of the stochastic force in the generalized Langevin

equation[18—-20. In the framework of kinetic theories, KP
—W(X'[x,t)p(x,1)], (1) serves as a model of isotropic collision kernel in the linear

Boltzmann equatiofi21]. Moreover, KP can describe a tur-
where coefficientsA, B, and W are defined in terms of a bulent, nondiffusive transport process in flui@z2].

given transition probability;, (x,t|X,tg). In particular, Many applications of KP are restricted to stationary solu-
tions. Those applications that regard KP as a model of some
W(x|x",t)= lim py(X,t+At|x",t)/At. (2)  physical phenomenon rely on a tacit assumption that the lim-

At—0 iting distribution can be reached fast for almost any initial

condition, what generally is justified only for colored noises
If we assume tha¥V(x|y,t) vanishes, Eq(1) resolves itself (exponentially falling correlations Since, recently, the im-
to the general diffusion equation describing a process witlportance of other kinds of noise has been widely recognized,
continuous paths. Its solutions are restricted to the Gausshe KP requires deeper insight and more detailed elaboration.
ians, but long-time correlations are not excludd@-1§. In this paper we derive the general, time-dependent solution
The integral term, in turn, is responsible for jumping pro- of CKE for KP. We demonstrate how KP should be handled,
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in particular, with respect to the choice of initial conditions, ) ) ) )

to make the convergence as fast as possible. Another moti- Q(X)J v(x")p(x’,0)/[s+ v(x")]dx 0(x,0)
vation for using stationary solutions is that they are simpleG(x,s)=
and very easy to obtain. We show that one can get very [s+ ,,(X)]Sf Q(X")/[s+ v(x’)]dX’
simple expressions for time-dependent solutions as well.

The details of the derivation of CKE solution and discus- ®
sion of the general case are presented in Sec. Il. In Sec. Il . . . s e
we consider the case for which the functions defining the Ou'r am 1S tp invert t'he funct|oG(x,§). The. main d'ff"

rocessQ(x) and »(x), depend algebraically or and we culty in achieving that is connected with t_he_mtegral in the
P ’ NG ; denominator; the other terms can be easily inverted. There-
construct asymptotic solutions for largeFluctuation char- : :
- . : fore, we separate the term with the integral and express the
acteristics of the process—covariance and variance—are de- . : 9
. ; : ; final solution as the following convolution:
rived in Sec. V. The results are summarized and discussed in

Sec. V.

s+v(x)’

t
P(X,t)=p(x,0exd — v(x)t]+Q(x) fOJ v(x")p(x",0)
Il. GENERAL SOLUTION OF THE CKE FOR KP 1
Xexgd —v(x")rldm’ L
The stationary solution of Ed4) is given by
« 1
QX)(v(x))  QX)/¥(x) s[s+ V(x)]UQ(x')/[s+ v(x’)]dx’]

- G
v f QX' ) w(x")dx’ )

dr.

P(x)=

The inverse transform in Eq9) does exist, because the
Clearly, this solution is valid only for such(x) andQ(x)  original function tends to zero wits—c. We perform in-
that the distributionP(x) is normalizable, i.e., the integral version by applying the usual formula
in Eq. (5) is finite. We call the solutio®;(x) “normal.” The
normalization condition may not be satisfied if frequency 1 R T
v(X) equals zero for some=a, which implies the existence Lo THe)]= 2i _imwf(s)exp(st)ds. (10
of infinitely long free paths. This case is physically very
important; infinite jumps are necessary for Markovian pro-The integrand is an analytic function; it possesses two simple
cesses to possess long tails in the covariance function. Cefples, as=0 and as= — »(x), as well as two branch points
tainly, for such a choice of(x) and Q(x) that [P1(x)dX  x, andx,, which are real and nonpositive. The contour of
=0, the solution of Eq(4) does not converge to the normal integration then comprises small circles around those points
stationary distributiorP;(x). However, in this case another and straight line segments along the real negative half-axis,
stationary distribution emerges: on both sides of cut. The result of integration gives us the
inverse Laplace transform that appears in &4 It depends
P.(X)=8(X—a), 6 explicitly on stationary solution, either normal or singular.
2(X)=8(x=2) ©®  The transform reads

which we call the singular stationary distribution. In general, | expl— v(x)t)

an actual stationary solution can comprise both types of dis- £ ~= — Pi(X)/Q(X) —

tribution. v(x)f QX" [v(x")—v(x)]dx’
In order to find the general, time-dependent solution, we

apply the integral transform technique. We take the Laplace fxz exp(x't)

transform of both sides of Eq4) with respect to timet.
Denoting the transform op(x,t) by G(x,s), Li(p(x,t))

=G(x,s), the solution of the transformed equation can be - _ ) )
cast into the following form: The auxiliary functiong(x) estimates the difference of the

integrand values on different branches:

Q(X)Cs  p(x,0) @ _ 1
s+v(X) s+wv(x)’ g(x)= lim
e-0" f Q(X)/[x+ie+ v(x")]dx’

x mg(x ydax! (i=12. (11

G(x,8)=

where p(x,0) is an initial distribution and Cg
= [v(x)G(x,s)dx depends only os. We can then calculate
C, just by inserting into the above integr@l(x,s) from Eg.
(7). The final solution of the transformed CKE reads

1

JQ(X')/[X—ie+y(x’)]dx’

(12
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Performing the convolution produces the final result:

I II IiI
% N~
#(@,8) = (,0) expl—(@)t] + Pila) - Pua) [ pla', 0 expl-(aelde
v K
Q(z) exp[-v(z)t] / v )p(',0) , , Q(z) / v(z')p(z’, 0) Nl
d y exp|— t)d
V@ [REN W) — v @ | v) — o) o) [ G | W) - () TPV
VI
! 1"
" (z')g(= )p(z 0) "y _ _ . (13
w)PV/ dz / T T @ — o (@] {exp(z''t) — exp[—v(z')t]}dz’ (i=1,2).
|
The most interesting is the asymptotic behaviopf,t) A. Normal stationary asymptotic solution
at t—o. We can then simplify Eq(13), preserving only Let the stochastic variable be defined on the interval

relative importance of subsequent terms depends on Whether

we deal with the normal or with the singular case. One can Q) =|x|%  v(x)=|x|~. (14

demonstrate that in the normal case the term VI drops with

time faster than Il and V and, therefore, it can be neglectedin addition, we assume the homogeneous initial condition

On the other hand, the term VI becomes important for thep(x,0)=0.5. The requirement of the existence of a normal

singular case, in contrast with I, IV, and V, which, in turn, stationary state, P{(x)=[Q(x)/v(X)]/[Q(x")/v(x")dx’

can be dropped. Finally, the term | falls exponentially in both=0.5(a— 8+ 1)|x|*~#, imposes the following condition on

cases and it can be neglected, unlpés,0)= 4(x). the parametersp<<a+1. The solution of the CKE13)
The choice of the initial conditiop(x,0) is essential for reads in this case as

the actual solution of the CKE in the asymptotic regime.

In particular, this function decisively influences the

1

speed of convergence to the stationary state. Let us P(x,t)~P1(x) 1+fo exp(—t|x’|3)dx’)
consider from that point of view the integral in term Ill.
It can be comprehended as the Laplace integral: |x|*~#
f(t)=/p[x,0)expv(X)t](d¥dv)dv. Therefore, we can t
evaluate an initial conditiop(x,0), which leads to some Zf X" |*/([x"[P=|x]#)dx’
priori assumed(t), with a giveny(x), just by inverting the 0
Laplace transformp(x,0)=L ,jl[f(t)](dv/dx). 1)x’|Bexp( —t|x'|#)

Equation(13) determines the general solution of CKE for X fo P[P dx’. (15

KP for any given function®(x) andv(x). Depending on a

particular form of these functions, as well as on the initial

condition, the solution converges to the normal stationary>INCe We are interested in the asymptotic behaviere, the
stateP;(x), the singular ondP,(x) or to a combination of terms that fall down quickly with time have been neglected
both. For some cases, the convergence is so slow that tHg EG: (15). The above equation can still be simplified. Due

process itself can hardly be regarded as stationary. Wio the exponential factor in the integrands, in the limit

: ; ; - only very small values of the integration variable con-
grgf)egaéh;?x[))ri?lblﬁgn f:)r:lc?viit:g ;oercg(ljgilebram dependences c%?bute to the integral, providingx#0 [23]. Therefore,

the first integral can be estimated in the following way:

I sexptix'[P)dx = [rexp(tjx'|f)dx ~t~Y£. The second in-

tegral, in turn, is proportional to the derivative of the first
lll. APPLICATION TO ALGEBRAIC DEPENDENCES one: it falls like t™*"# and can be neglected. The final
Probability distributions possessing power-law tails aredsymptotic formula for the probability distribution is then

distinguished because they are characterized by divergent

moments. As a consequence, stochastic trajectories exhibit ~ p(x,t)~Py(x)[1—t"YAT'(1/8)/B] (x#0). (16)

long jumps, frequently observed in physical phenomena. In

this section we consider the KP defined ®@yx) and v(x), The solution forx=0 (8>0) can be obtained directly from

which depend algebraically on The resulting probability Eq. (4): dp(0t)/dt=0, then p(0;t)=constp(0,0). This

distributions are also algebraic at large time. finding contradicts the stationary asymptotic soluti®{0),
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FIG. 1. Probability distributiorp(x,t) for the normal case, cal- FIG. 2. Relative deviation of the probability distributiqt7)

culated according t617), as a function ofx| at timest=0 (solid  from the stationary limiting distributiof; (x) as a function of time.

line), t=2 (long dashes t=10 (short dashes andt=100 (dash-  Results for the following values of are presentedk=0.7 (solid

dotted ling. line), x=0.5(long dashes andx=0.3 (short dashgs For compari-
son, the slope 1/is shown. The singularity for th&=0.3 case

which equals zero ite> 3. Therefore, the distribution the corresponds to the time value for which the plotted function passes

system converges to, must be discontinuous=a6. through zero.

In order to illustrate the above formulas, let us consider a o

simple examplex=2 andB=1. The exact result, involving QM) =Ix[*, w(x)=[x|*"", (19)

all the terms in Eq(13), reads ) . L
wherexe[—1,1]. The corresponding stationary solution is

p(X,t) then: P,(x) = 6(x). We assume the same initial condition as

for the normal casep(x,0)=0.5. Now, the most important
2 term in Eq.(13) is VI. It takes the form

1 X
= Eexp(— [x|t)+]|x|— T exp(—|x|t)A(X)

exp(—|x|t)In(1/x|—1)

p(X,t)~— +(a+1)[x|*
fl exp(—x't)dx’ X[ IN?(1)x] = 1) + 77
+ L
0 (|x|=x"){[0.5+ X" +Xx"2In(1x" —1) >+ =3x'4} 1 exp(—x't)
xf dx’.
(17 o X'[|x]*tt=x"[IN*(1x" — 1)+ 7?]
where (20
A Ix|[Ina+2(|x|Ina+1)%+272|x|?]+1 We want to find the asymptotic expression for E20),
X)= . .
St x|+ [x12In )2+ 72Ix|4 ' fl_rst f(_)r x#0. As for th_g pormal stationary case, we try to
(0.5+ x| +[x|%Ina)*+7lx] simplify integral (20) utilizing the fact that for large only
-~ small values of the integration variable contribute to
a=1/x|-1. (18

the integral. Therefore,p(x,t)~(a+1)/|x|[§exp(—tx')/
Figure 1 demonstrates how this distribution evolves with?(llnzx/dx,’ wherea<_<1. We estimate the value of the above
time. The straight line corresponding to the stationary "mitlnte_gral t_)y approximating the exponent from below by a
P,(x)=|x| is reached at relatively short times|| is not ~ Straight line segment: exptx)=1-tx, where x < (0,11).
very small. In the vicinity of the poink=0, the curve rap- Therefore,
idly bends upwards to the valyg0,t)=0.5.
Figure 2 shows that the asymptotic time dependente 1/ fa exp(—tx) f”t 1-tx
resulting from expressiofil6), reproduces the exact result 0o xIn?x -
quite precisely even at short times. Moreover, the plotted
quantity appears to be asymptotically independent, in  The leading term at— o in the right-hand side integral be-
agreement with Eq(16). haves like 1/Irt. To estimate the value of our integral from
above, we choose some poiqk (0, a) and approximate the
B. Singular stationary asymptotic solution exponent by a functio,(x), defined as two straight line
segments that coincide with the exponential function at three
points:x=0, x;, anda. Therefore,

dx. (21
0 xIn%x

If conditions for parametera and 8 from the preceding
section are not met, the normal stationary stBi¢x) no
longer exists. Instead, the process is expected to converge to
the singular stat®,(x). We consider the following choice of fa deg fa 9(X)
functionsQ and v: 0o xIn%x 0 xIn?x

dx. (22
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FIG. 3. Reciprocal of probability distributiop(x,t) for the sin- FIG. 4. Exact probability distributiorp(x,t) for the singular

gular casg(19), with =0, calculated according to EO), as a  case(19) with a=1, evaluated from Eqg(13), for the timest=1
function of time. Curves in the figure correspond to the following (solid ling), t=10 (long dashes t=>50 (short dashes andt=500
process valuesx=0.1 (solid line), x=0.3 (long dashes x=0.5 (dash-dotted ling

(short dashes andx=0.7 (dash-dotted ling

of x=0, but at this point itself it must be kept at a constant
We assume time dependence of the painin the formx;  value. Figure 4 shows how the exact distributip,t),
=t"7, where 0<y<1. The corresponding slope of the left evaluated according to Eq13) for «=1, approaches that
segment for largéequals—1t?, g(x)~1—t"x, and this seg- extraordinary shape.
ment contributes predominantly to the integral. Then in the
limit y—1~, both approximations of the exponential func-
tion converge. Evaluating the right-hand side integral in Eq.
(22) and taking the limity—1~, we find that the leading An interesting feature of KP, and important one from the
term in the resulting expression coincides with the outcomepoint of view of applications, is that it possesses a very broad
previously obtained as estimation from below: 1/IThen  class of possible covariance functions. One can construct the
the final asymptotic formula for the solution in the singular process for almost arbitrary form of covariance by changing
case reads the Q(x) and v(x) functions.

The covariance is defined by the following average:

IV. COVARIANCE

at+l
POLO~ Gy (X#O). (23 C(to,7)=(X(to)X(to+ 7)), (25)

Note that the shape of the distribution, with respect either t@erformed over the CKE solutiop(x,t), wherer=t; —t, is
x or tot, does not depend oa. a time increment. The covariance can be expressed in terms

The asymptotic probability distribution for=0 can be ©f the conditional probability?(x, 7/x") [12] by integrating
obtained similarly. One should evaluate the limit-0 in Eq. ~ ©Ver the CKE solutiorp(x,t), taken at the final time=t,:
(20) and then estimate the resulting integral both from below

and from above. We get the simple result C(t1,7)=j f X' (t;— 7)X(t) P(X, 7]x ) p(X,ty)dxdX .
p(0t)~t/Int. (24 (26)
As an example, let us consider tae=0 case. Since the The evaluation of conditional probability(x,7|x") is pre-

terms 1-V in Eq.(13) vanish in this case, EG20) gives us sented in the Appendix. Its Laplace transform takes the form
the exact solution, the reciprocal of which is presented in

Fig. 3 in the semilogarithmic scale. This form of the plot . [P(x.7x')]= A(X" —x) N v(X")Q(X)

clearly demonstrates the inverse logarithmic time depen- i ’ stu(x')  [s+v(x)][s+v(X)]

dence of distributiori20)—the curve becomes a straight line

for large t—in accordance with Eq(23). This asymptotic 1

dependence is reached at short timgjfis close to 1. Q) : (27
Processes witr>0 possess asymptotically the same dis- s| ="~ dx”

tribution (23) as the exemplary case considered above. How- s+ v(X")

ever, there is a difference at the poit 0, where the solu-

tion resembles the normal caéeee Fig. 1 inserting, e.g., Then, we take Laplace transform of Hg6) with respect to
x=0 to the original CKE(4), we obtain the straightforward 7, £[C(t,7)]=C(t,s), and apply expressio7) for the
solution p(0,t) =const=p(0,0). Therefore, the distribution transform of the conditional probability. After performing the
p(x,t) rises with time to infinity in the closest neighborhood integrals, we finally obtain
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Jx’v(x’)p(x’,tl)/[s+ v(x’)]dx’ij(x)/[s+ v(X)]dx

E(tl,s)zf X"2p(x",t)/[s+v(x")]dx" + (28

sf Q(X")[s+ v(x")]dx"

The above expression becomes especially simgéxft) as V. SUMMARY AND DISCUSSION
well asv(x) are even functions of variable In that case the
second component of E€R8) vanishes. The remaining term
can be easily inverted to the form

We have solved the CKE for KP, which is a simple, step-
wise jumping process. The KP is Markovian and stationary,
defined by a stationary transition probability. We have dem-
onstrated that there are two kinds of time-independent prob-

C(to,T)If x2exd — v(X)7]p(x,to+ r)dx. (29  ability distributions that the general solution converges to:
the normal distribution, given as a smooth functionQ@(fx)
and v(x), and a singular one, in the form of ti&function.

One can utilize Eq(29) to find the covariance for both the The general solution of CKE for KP, involving arbitraty
cases considered in the preceding section. Unfortunately, theéhd v, has been derived. The detailed analysis of that solu-
asymptotic expressions f@(x,t) cannot be applied because tion has been performed for the processes with algebraic
approximations u_sed to derive them are poor for very smalb(x) andv(x), defined on the finite interval of process val-
x. Since we are interested predominantly in largesmall e |n this case, it is possible to achieve simple asymptotic
values ofx are important: in fact they constitute the main formylas for the CKE solutions. Those asymptotic expres-
contribution to integra(29). Consequently, the evaluation of gjgns for the probability distribution are also algebraic func-
the covariance function tail requires taking into account thg;ons of the process valueand, therefore, they correspond to
complete expression fa¥(x,t), given by Eq.(13). _some physically important phenomena. Moreover, it appears
_ On the other hand, the covariance for the normal case ifnat, for the normal case, the probability distribution con-
its stationary limit, characterized by the probability distribu-erges to the stationary state algebraically with time. On the
tion P4(x), can be easily evaluated. In particular, for KP gther hand, the singular case exhibits even slower conver-
defined by Eq(14), it reads gence to the limiting distribution, like 1/in This particular
time dependence of the asymptotic distribution appears to be
generic for all processes leading to the singular stationary
state among those we have considered.

Our findings demonstrate that, due to slow convergence,
the stationary, time-independent state may not be reached in
a reasonable time and in many practical applications the full
S . : solution must be taken into account. This conclusion is ob-
distribution P4(x). It can be easily constructed by solving a vious for the singular case, but even for the normal one the

simple differential equation. . speed of convergence can be arbitrarily slow if frequency
In contrast to the general formula for the covariance, the

. 2 9 . v(X) is characterized by a sufficiently high power ind@x
varance of the process; _.<X (to)), can be determined by Moreover, we have demonstrated that also the choice of ini-
using asymptotic expressions fp(x,t); we need only to

. . tial distribution is crucial for the convergence speed. Conse-
insert =0 into Eq.(29). In the normal case, we have quently, some KP would be effectively time dependent and,
therefore, would mimic nonstationary processes, as soon as
_ the observation time is not extremely long.
[1-to 1/BF(1/'8)/'3]' The fluctuation analysis confirmsythes% conclusions. We
(31) have derived a general formula for the covariance and calcu-
lated the variance for both cases, Efs?) and (19). In the

Therefore, the variance converges with time to a constarfiormal case, the variance converges wighto a constant
value in the same rate as the distributiofx,t) does to the value in the same way as the CKE solution does to the sta-

stationary stateP;(x). In the singular case we obtain the tonary I|rr(1j|t|ng d|str|bug$n. In _tr;]e singular c,;gs.e, n tlurn, t??
simple expression variance does not stabilize with time at a finite value—this

behavior is typical for stationary processes—but it falls to
zero extremely slowlysee Eq(32)].

The singular solution corresponds to the case of divergent
normalization integral in Eq(5): nearx=0, the frequency
Obviously, both results, Eq$31) and(32), are valid only if ~ »(x) falls to zero fast, compared tQ(x). Since the fre-
to is large. In contrast to the normal case, the variaf3&  quency is small there, process values closg=® are kept
does not stabilize at a finite value; it falls to zero with for a long time. Conversely, ifx| is large, the process fluc-

2 F(a—ﬁ+3
Bla—p+1) B

()= 728, (30)

Brissaud and Friscfil7] demonstrated that there exists some
stationary KP for any choice of both covarian€ér) and

o?(to)=

2
(a—B+1)(a—B+2)

o?(tg)=(a+1)/In(ty). (32
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tuates rapidly, until eventualljx| becomes small. As a re- Now we consider the general case lof-1 jumps: the
sult, the distribution is attracted to tixe=0 point. process leads from, to x through the sequence of values
In fact, the normal casél4), for which «,8>0, pos- Xq, ... Xc. The probability of that sequence is given by the

sesses the singular stationary solutPy(x) as well. How-  following recurrence formula:

ever, the general solutiofl5) converges always t®;(x),

unlesg the initial d|§tr|putlonp(x,0)=5(x). Therefore, Prsa(X, X1, - - . Xirt|X0) = #(X) Q(X)
choosing some combination of th® function and another

arbitrary function as the initial condition, one obtains a com- t
bination of P;(x) andP,(x) as limiting stationary distribu- X OPK(X'Xl’ ++ Xi-1,8[%0)
tion att—oo,

Xexd (s—t)v(x)]ds. (A4)
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APPENDIX
P(x,t|Xg) =exd —tv(Xg) ] d(X—x
We want to find the conditional probabili(x,t|x,) that (x.txo) 1 (Xo) o o

after timet the value of the process becomeprovided that ~

initially it was x,. First, we consider the case that there was +k§_:0 f PrOX, X, -+ X-1,tXp)dXg - - - A .
no jump at all. The probabilityPy(x,t|x,) of such event -

follows directly from the definition of the KP: (AB)

Po(x,t+At[x0)=Po(x.t{x)[ 1= v(x0)At], (A1) The probability P, in integral (A5) involves, according to

whereAt is small. Therefore, we obtain the Poissonian dis-Ed- (A4), thek-fold convolution. Therefore, it can be conve-
tribution niently handled in terms of Laplace transforms. Transform-
ing Eq. (A5) term by term, we have

Po(X,t[X0) = exd — »(Xo)t]18(X—Xo). (A2)
Next we calculate the probability that there was just one . [P(x.tlx)]— O(X—Xop) N v(Xo)  Q(X)
jump during the timd. In order to calculate this probability, t 70 s+v(Xg) K=o St v(Xg) S+ v(X)
P1(X,t|xo), we divide the time intervdlO,t] into n subinter- v
vals, such that &ty<t;<-..-<t,=t, wherenis large. The v(X")Q(X")
length of subsequent subintervals As¢;=t;,;—t;. Let us X f T(x’)dx 1 ' (A6)

assume that the jump occurred in ttile subinterval. There-
fore, to get the required probability we must multiply the
probability of this event by the probability that there was nowhere thek-fold integral has been factorized. After some
jump in the other subintervals and, finally, take a sum oveg€lementary algebra, we obtain the final formula for the
all subintervals. The jump probability is given by the defini- Laplace transform of the required conditional probability:
tion of KP: v(Xq) Q(X)At; . Taking the limitAt;—0, we can

changte the sum over subintervals into the integral. Finally, £IPOtIg)]= S(X—Xg) v(X)  Q(X)
we ge AR s u(xg) | S+ p(Xg) S+ v(X)
t
P1(X,t|Xq)=v(X xfex —v(Xo)S 1
1(X,t[Xo) (o)Q()OF[ (Xo)s] y (A7)
’ ! !
x exd — »(x)(t—s)]ds. (A3) Sf QIX)/Ls+w(x")]dx
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