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Solving the Chapman-Kolmogorov equation for a jumping process

A. Kamińska and T. Srokowski
Institute of Nuclear Physics, PL-31-342 Krako´w, Poland

~Received 8 January 2003; published 23 June 2003!

A general solution to the Chapman-Kolmogorov equation for a jumping process called the ‘‘kangaroo
process’’ is derived. A special case of algebraic dependences is discussed in detail. In particular, simple
asymptotic formulas for probability distribution are presented. It is demonstrated that there are two different
classes of limiting stationary distributions. An expression for the covariance is also derived.
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I. INTRODUCTION

It became clear in recent years that a stochastic des
tion of many physical phenomena requires a more gen
class of stochastic processes than the white noise, posse
no correlations and being Gaussianly distributed. Long-tim
algebraic covariances appear in the fluid dynamics@1–3#,
linearized hydrodynamics@4#, for the noise-induced Star
broadening phenomenon@5#. Moreover, if one tries to de
scribe a complicated dynamical system in terms of a sin
effective variable and some noise responsible for fluct
tions, that noise must be correlated@6,7#. The Brownian par-
ticle trajectory is given in this case by the generalized Lan
vin equation in which the stochastic force must
represented by a process possessing final correlation t
On the other hand, there are strong indications of n
Gaussian noises appearances in nature@8,9#; the algebra-
ically distributed noise serves to generate Le´vy flights as a
driving force in the Langevin equation@10#. Similarly, the
fractional Fokker-Planck equation corresponds to nonlin
Langevin equation driven by non-Gaussian noise@11#.

Emergence of these phenomena emphasizes the im
tance of stochastic processes that possess a general fo
covariance and arbitrary distribution shape, not necessa
Gaussian. Such processes can still be Markovian and sa
the forward Chapman-Kolmogorov equation~CKE! @12#:

]

]t
p~x,t !52

]

]x
@A~x,t !p~x,t !#1

]2

]x2
@B~x,t !p~x,t !#

1E dx8@W~xux8,t !p~x8,t !

2W~x8ux,t !p~x,t !#, ~1!

where coefficientsA, B, and W are defined in terms of a
given transition probabilityptr(x,tux0 ,t0). In particular,

W~xux8,t !5 lim
Dt→0

ptr~x,t1Dtux8,t !/Dt. ~2!

If we assume thatW(xuy,t) vanishes, Eq.~1! resolves itself
to the general diffusion equation describing a process w
continuous paths. Its solutions are restricted to the Ga
ians, but long-time correlations are not excluded@13–16#.
The integral term, in turn, is responsible for jumping pr
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cesses and it can produce probability distributions with va
ous shapes and possessing various forms of the covaria

In this paper, we consider a special form of the jumpi
process called the kangaroo process~KP! @17#. It is a step-
wise constant Markov process defined for infinitesimal tim
intervals by the following stationary transition probability:

ptr~x,Dtu,x8,0!5@12n~x8!Dt#d~x82x!1n~x8!DtQ~x!,
~3!

whereQ(x) is the given probability density andn(x) is the
jump frequency. Therefore,ptrdx means the probability tha
KP value is betweenx andx1dx at timeDt, knowing that it
was equal tox8 at time 0. The first term on the right-han
side of Eq.~3! is the probability that no jump occurred in th
time interval (0,Dt). The termn(x8)Dt means the probabil-
ity that one jump occurred. Directly after such a jump, t
probability density ofx becomesQ(x). To get the CKE for
KP, we insert the transition probability~3! into Eq. ~1!. One
can verify that both coefficientsA andB vanish and CKE is
fully determined by the integral component. It takes the fo

]

]t
p~x,t !52n~x!p~x,t !1Q~x!E n~x8!p~x8,t !dx8.

~4!

KP is a stationary Markov process; it is characterized
some stationary probability distribution, not necessar
Gaussian, and it can possess an arbitrary covariance. In
dition, there exists a simple procedure allowing us to co
struct a KP if those quantities are givena priori @17#. This
fact makes the KP very useful for applications, e.g., a
model of the stochastic force in the generalized Lange
equation@18–20#. In the framework of kinetic theories, KP
serves as a model of isotropic collision kernel in the line
Boltzmann equation@21#. Moreover, KP can describe a tu
bulent, nondiffusive transport process in fluids@22#.

Many applications of KP are restricted to stationary so
tions. Those applications that regard KP as a model of so
physical phenomenon rely on a tacit assumption that the
iting distribution can be reached fast for almost any init
condition, what generally is justified only for colored nois
~exponentially falling correlations!. Since, recently, the im-
portance of other kinds of noise has been widely recogniz
the KP requires deeper insight and more detailed elabora
In this paper we derive the general, time-dependent solu
of CKE for KP. We demonstrate how KP should be handl
©2003 The American Physical Society14-1
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in particular, with respect to the choice of initial condition
to make the convergence as fast as possible. Another m
vation for using stationary solutions is that they are sim
and very easy to obtain. We show that one can get v
simple expressions for time-dependent solutions as well.

The details of the derivation of CKE solution and discu
sion of the general case are presented in Sec. II. In Sec
we consider the case for which the functions defining
process,Q(x) and n(x), depend algebraically onx and we
construct asymptotic solutions for larget. Fluctuation char-
acteristics of the process—covariance and variance—are
rived in Sec. IV. The results are summarized and discusse
Sec. V.

II. GENERAL SOLUTION OF THE CKE FOR KP

The stationary solution of Eq.~4! is given by

P1~x!5
Q~x!^n~x!&

n~x!
5

Q~x!/n~x!

E Q~x8!/n~x8!dx8

. ~5!

Clearly, this solution is valid only for suchn(x) and Q(x)
that the distributionP1(x) is normalizable, i.e., the integra
in Eq. ~5! is finite. We call the solutionP1(x) ‘‘normal.’’ The
normalization condition may not be satisfied if frequen
n(x) equals zero for somex5a, which implies the existence
of infinitely long free paths. This case is physically ve
important; infinite jumps are necessary for Markovian p
cesses to possess long tails in the covariance function.
tainly, for such a choice ofn(x) and Q(x) that *P1(x)dx
5`, the solution of Eq.~4! does not converge to the norm
stationary distributionP1(x). However, in this case anothe
stationary distribution emerges:

P2~x!5d~x2a!, ~6!

which we call the singular stationary distribution. In gener
an actual stationary solution can comprise both types of
tribution.

In order to find the general, time-dependent solution,
apply the integral transform technique. We take the Lapl
transform of both sides of Eq.~4! with respect to timet.
Denoting the transform ofp(x,t) by G(x,s), Lt„p(x,t)…
5G(x,s), the solution of the transformed equation can
cast into the following form:

G~x,s!5
Q~x!Cs

s1n~x!
1

p~x,0!

s1n~x!
, ~7!

where p(x,0) is an initial distribution and Cs
5*n(x)G(x,s)dx depends only ons. We can then calculate
Cs just by inserting into the above integralG(x,s) from Eq.
~7!. The final solution of the transformed CKE reads
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G~x,s!5

Q~x!E n~x8!p~x8,0!/@s1n~x8!#dx8

@s1n~x!#sE Q~x8!/@s1n~x8!#dx8

1
p~x,0!

s1n~x!
.

~8!

Our aim is to invert the functionG(x,s). The main diffi-
culty in achieving that is connected with the integral in t
denominator; the other terms can be easily inverted. Th
fore, we separate the term with the integral and express
final solution as the following convolution:

p~x,t !5p~x,0!exp@2n~x!t#1Q~x!E
0

tE n~x8!p~x8,0!

3exp@2n~x8!t#dm8L t
21

3S 1

s@s1n~x!#H E Q~x8!/@s1n~x8!#dx8J D dt.

~9!

The inverse transform in Eq.~9! does exist, because th
original function tends to zero withs→`. We perform in-
version by applying the usual formula

L t
21@ f ~s!#5

1

2p i E2 i`1s

i`1s

f ~s!exp~st!ds. ~10!

The integrand is an analytic function; it possesses two sim
poles, ats50 and ats52n(x), as well as two branch point
x1 and x2, which are real and nonpositive. The contour
integration then comprises small circles around those po
and straight line segments along the real negative half-a
on both sides of cut. The result of integration gives us
inverse Laplace transform that appears in Eq.~9!. It depends
explicitly on stationary solution, either normal or singula
The transform reads

L t
2152Pi~x!/Q~x!2

exp~2n~x!t !

n~x!E Q~x8!/@n~x8!2n~x!#dx8

2PE
x1

x2 exp~x8t !

x8@x82n~x!#
g~x8!dx8 ~ i 51,2!. ~11!

The auxiliary functiong(x) estimates the difference of th
integrand values on different branches:

g~x!5 lim
e→01S 1

E Q~x8!/@x1 i e1n~x8!#dx8

2
1

E Q~x8!/@x2 i e1n~x8!#dx8D . ~12!
4-2
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Performing the convolution produces the final result:

~13!
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The most interesting is the asymptotic behavior ofp(x,t)
at t→`. We can then simplify Eq.~13!, preserving only
those terms that fall down with time sufficiently slowly. Th
relative importance of subsequent terms depends on whe
we deal with the normal or with the singular case. One c
demonstrate that in the normal case the term VI drops w
time faster than III and V and, therefore, it can be neglect
On the other hand, the term VI becomes important for
singular case, in contrast with III, IV, and V, which, in tur
can be dropped. Finally, the term I falls exponentially in bo
cases and it can be neglected, unlessp(x,0)5d(x).

The choice of the initial conditionp(x,0) is essential for
the actual solution of the CKE in the asymptotic regim
In particular, this function decisively influences th
speed of convergence to the stationary state. Let
consider from that point of view the integral in term II
It can be comprehended as the Laplace integ
f (t)[*p@x,0)exp(2n(x)t#(dx/dn)dn. Therefore, we can
evaluate an initial conditionp(x,0), which leads to somea
priori assumedf (t), with a givenn(x), just by inverting the
Laplace transform:p(x,0)5L n

21@ f (t)#(dn/dx).
Equation~13! determines the general solution of CKE f

KP for any given functionsQ(x) andn(x). Depending on a
particular form of these functions, as well as on the init
condition, the solution converges to the normal station
stateP1(x), the singular oneP2(x) or to a combination of
both. For some cases, the convergence is so slow tha
process itself can hardly be regarded as stationary.
present this problem in detail for algebraic dependence
Q(x) andn(x) in the following section.

III. APPLICATION TO ALGEBRAIC DEPENDENCES

Probability distributions possessing power-law tails a
distinguished because they are characterized by diver
moments. As a consequence, stochastic trajectories ex
long jumps, frequently observed in physical phenomena
this section we consider the KP defined byQ(x) andn(x),
which depend algebraically onx. The resulting probability
distributions are also algebraic at large time.
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A. Normal stationary asymptotic solution

Let the stochastic variablex be defined on the interval
@21,1# and the process itself by the following functions:

Q~x!5uxua, n~x!5uxub. ~14!

In addition, we assume the homogeneous initial condit
p(x,0)50.5. The requirement of the existence of a norm
stationary state, P1(x)5@Q(x)/n(x)#/*Q(x8)/n(x8)dx8
50.5(a2b11)uxua2b, imposes the following condition on
the parameters:b,a11. The solution of the CKE~13!
reads in this case as

p~x,t !'P1~x!S 11E
0

1

exp~2tux8ub!dx8D
1

uxua2b

2E
0

1

ux8ua/~ ux8ub2uxub!dx8

3E
0

1ux8ubexp~2tux8ub!

ux8ub2uxub
dx8. ~15!

Since we are interested in the asymptotic behaviort→`, the
terms that fall down quickly with time have been neglect
in Eq. ~15!. The above equation can still be simplified. Du
to the exponential factor in the integrands, in the limitt
→`, only very small values of the integration variable co
tribute to the integral, providingxÞ0 @23#. Therefore,
the first integral can be estimated in the following wa
*0

1exp(2tux8ub)dx8'*0
`exp(2tux8ub)dx8;t21/b. The second in-

tegral, in turn, is proportional to the derivative of the fir
one: it falls like t2121/b and can be neglected. The fin
asymptotic formula for the probability distribution is then

p~x,t !'P1~x!@12t21/bG~1/b!/b# ~xÞ0!. ~16!

The solution forx50 (b.0) can be obtained directly from
Eq. ~4!: dp(0,t)/dt50, then p(0,t)5const5p(0,0). This
finding contradicts the stationary asymptotic solutionP1(0),
4-3
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which equals zero ifa.b. Therefore, the distribution the
system converges to, must be discontinuous atx50.

In order to illustrate the above formulas, let us conside
simple example:a52 andb51. The exact result, involving
all the terms in Eq.~13!, reads

p~x,t !

5
1

2
exp~2uxut !1uxu2

x2

4 Fexp~2uxut !A~x!

1E
0

1 exp~2x8t !dx8

~ uxu2x8!$@0.51x81x82ln~1/x821!#21p2x84%
G ,

~17!

where

A~x!5
uxu@ ln a12~ uxu ln a11!212p2uxu2#11

~0.51uxu1uxu2ln a!21p2uxu4
,

a51/uxu21. ~18!

Figure 1 demonstrates how this distribution evolves w
time. The straight line corresponding to the stationary lim
P1(x)5uxu is reached at relatively short times ifuxu is not
very small. In the vicinity of the pointx50, the curve rap-
idly bends upwards to the valuep(0,t)50.5.

Figure 2 shows that the asymptotic time dependencet,
resulting from expression~16!, reproduces the exact resu
quite precisely even at short times. Moreover, the plot
quantity appears to be asymptoticallyx independent, in
agreement with Eq.~16!.

B. Singular stationary asymptotic solution

If conditions for parametersa andb from the preceding
section are not met, the normal stationary stateP1(x) no
longer exists. Instead, the process is expected to converg
the singular stateP2(x). We consider the following choice o
functionsQ andn:

FIG. 1. Probability distributionp(x,t) for the normal case, cal
culated according to~17!, as a function ofuxu at timest50 ~solid
line!, t52 ~long dashes!, t510 ~short dashes!, and t5100 ~dash-
dotted line!.
06111
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Q~x!5uxua, n~x!5uxua11, ~19!

wherexP@21,1#. The corresponding stationary solution
then:P2(x)5d(x). We assume the same initial condition
for the normal case:p(x,0)50.5. Now, the most importan
term in Eq.~13! is VI. It takes the form

p~x,t !'2
exp~2uxut !ln~1/uxu21!

uxua11@ ln2~1/uxu21!1p2#
1~a11!uxua

3E
0

1 exp~2x8t !

x8@ uxua112x8#@ ln2~1/x821!1p2#
dx8.

~20!

We want to find the asymptotic expression for Eq.~20!,
first for xÞ0. As for the normal stationary case, we try
simplify integral ~20! utilizing the fact that for larget only
small values of the integration variable contribute
the integral. Therefore,p(x,t)'(a11)/uxu*0

aexp(2tx8)/
x8ln2x8dx8, wherea!1. We estimate the value of the abov
integral by approximating the exponent from below by
straight line segment: exp(2tx)>12tx, where xP(0,1/t).
Therefore,

E
0

a exp~2tx!

x ln2x
dx>E

0

1/t 12tx

x ln2x
dx. ~21!

The leading term att→` in the right-hand side integral be
haves like 1/lnt. To estimate the value of our integral from
above, we choose some pointxtP(0, a) and approximate the
exponent by a functiongt(x), defined as two straight line
segments that coincide with the exponential function at th
points:x50, xt , anda. Therefore,

E
0

a exp~2tx!

x ln2x
dx<E

0

a gt~x!

x ln2x
dx. ~22!

FIG. 2. Relative deviation of the probability distribution~17!
from the stationary limiting distributionP1(x) as a function of time.
Results for the following values ofx are presented:x50.7 ~solid
line!, x50.5 ~long dashes!, andx50.3 ~short dashes!. For compari-
son, the slope 1/t is shown. The singularity for thex50.3 case
corresponds to the time value for which the plotted function pas
through zero.
4-4
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We assume time dependence of the pointxt in the form xt
5t2g, where 0,g,1. The corresponding slope of the le
segment for larget equals2tg, gt(x)'12tgx, and this seg-
ment contributes predominantly to the integral. Then in
limit g→12, both approximations of the exponential fun
tion converge. Evaluating the right-hand side integral in E
~22! and taking the limitg→12, we find that the leading
term in the resulting expression coincides with the outco
previously obtained as estimation from below: 1/lnt. Then
the final asymptotic formula for the solution in the singu
case reads

p~x,t !'
a11

uxu ln t
~xÞ0!. ~23!

Note that the shape of the distribution, with respect eithe
x or to t, does not depend ona.

The asymptotic probability distribution forx50 can be
obtained similarly. One should evaluate the limitx→0 in Eq.
~20! and then estimate the resulting integral both from bel
and from above. We get the simple result

p~0,t !'t/ ln t. ~24!

As an example, let us consider thea50 case. Since the
terms I–V in Eq.~13! vanish in this case, Eq.~20! gives us
the exact solution, the reciprocal of which is presented
Fig. 3 in the semilogarithmic scale. This form of the pl
clearly demonstrates the inverse logarithmic time dep
dence of distribution~20!—the curve becomes a straight lin
for large t—in accordance with Eq.~23!. This asymptotic
dependence is reached at short time ifuxu is close to 1.

Processes witha.0 possess asymptotically the same d
tribution ~23! as the exemplary case considered above. H
ever, there is a difference at the pointx50, where the solu-
tion resembles the normal case~see Fig. 1!: inserting, e.g.,
x50 to the original CKE~4!, we obtain the straightforward
solution p(0,t)5const5p(0,0). Therefore, the distribution
p(x,t) rises with time to infinity in the closest neighborhoo

FIG. 3. Reciprocal of probability distributionp(x,t) for the sin-
gular case~19!, with a50, calculated according to Eq.~20!, as a
function of time. Curves in the figure correspond to the followi
process values:x50.1 ~solid line!, x50.3 ~long dashes!, x50.5
~short dashes!, andx50.7 ~dash-dotted line!.
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of x50, but at this point itself it must be kept at a consta
value. Figure 4 shows how the exact distributionp(x,t),
evaluated according to Eq.~13! for a51, approaches tha
extraordinary shape.

IV. COVARIANCE

An interesting feature of KP, and important one from t
point of view of applications, is that it possesses a very bro
class of possible covariance functions. One can construc
process for almost arbitrary form of covariance by chang
the Q(x) andn(x) functions.

The covariance is defined by the following average:

C~ t0 ,t!5^x~ t0!x~ t01t!&, ~25!

performed over the CKE solutionp(x,t), wheret5t12t0 is
a time increment. The covariance can be expressed in te
of the conditional probabilityP(x,tux8) @12# by integrating
over the CKE solutionp(x,t), taken at the final timet5t1:

C~ t1 ,t!5E E x8~ t12t!x~ t1!P~x,tux8!p~x,t1!dxdx8.

~26!

The evaluation of conditional probabilityP(x,tux8) is pre-
sented in the Appendix. Its Laplace transform takes the fo

Lt@P~x,tux8!#5
d~x82x!

s1n~x8!
1

n~x8!Q~x!

@s1n~x8!#@s1n~x!#

3
1

sE Q~x9!

s1n~x9!
dx9

. ~27!

Then, we take Laplace transform of Eq.~26! with respect to
t, Lt@C(t,t)#5 C̃(t,s), and apply expression~27! for the
transform of the conditional probability. After performing th
integrals, we finally obtain

FIG. 4. Exact probability distributionp(x,t) for the singular
case~19! with a51, evaluated from Eq.~13!, for the timest51
~solid line!, t510 ~long dashes!, t550 ~short dashes!, and t5500
~dash-dotted line!.
4-5



C̃~ t ,s!5E x82p~x8,t !/@s1n~x8!#dx81

E x8n~x8!p~x8,t1!/@s1n~x8!#dx8E xQ~x!/@s1n~x!#dx
. ~28!
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The above expression becomes especially simple ifp(x,t) as
well asn(x) are even functions of variablex. In that case the
second component of Eq.~28! vanishes. The remaining term
can be easily inverted to the form

C~ t0 ,t!5E x2exp@2n~x!t#p~x,t01t!dx. ~29!

One can utilize Eq.~29! to find the covariance for both th
cases considered in the preceding section. Unfortunately
asymptotic expressions forp(x,t) cannot be applied becaus
approximations used to derive them are poor for very sm
x. Since we are interested predominantly in larget, small
values ofx are important: in fact they constitute the ma
contribution to integral~29!. Consequently, the evaluation o
the covariance function tail requires taking into account
complete expression forp(x,t), given by Eq.~13!.

On the other hand, the covariance for the normal cas
its stationary limit, characterized by the probability distrib
tion P1(x), can be easily evaluated. In particular, for K
defined by Eq.~14!, it reads

C~t!5
2

b~a2b11!
GS a2b13

b D t22/b. ~30!

Brissaud and Frisch@17# demonstrated that there exists som
stationary KP for any choice of both covarianceC(t) and
distributionP1(x). It can be easily constructed by solving
simple differential equation.

In contrast to the general formula for the covariance,
variance of the process,s25^x2(t0)&, can be determined by
using asymptotic expressions forp(x,t); we need only to
insertt50 into Eq.~29!. In the normal case, we have

s2~ t0!5
2

~a2b11!~a2b12!
@12t0

21/bG~1/b!/b#.

~31!

Therefore, the variance converges with time to a cons
value in the same rate as the distributionp(x,t) does to the
stationary stateP1(x). In the singular case we obtain th
simple expression

s2~ t0!5~a11!/ ln~ t0!. ~32!

Obviously, both results, Eqs.~31! and~32!, are valid only if
t0 is large. In contrast to the normal case, the variance~32!
does not stabilize at a finite value; it falls to zero witht0.
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V. SUMMARY AND DISCUSSION

We have solved the CKE for KP, which is a simple, ste
wise jumping process. The KP is Markovian and stationa
defined by a stationary transition probability. We have de
onstrated that there are two kinds of time-independent pr
ability distributions that the general solution converges
the normal distribution, given as a smooth function ofQ(x)
andn(x), and a singular one, in the form of thed function.
The general solution of CKE for KP, involving arbitraryQ
andn, has been derived. The detailed analysis of that so
tion has been performed for the processes with algeb
Q(x) andn(x), defined on the finite interval of process va
ues. In this case, it is possible to achieve simple asympt
formulas for the CKE solutions. Those asymptotic expr
sions for the probability distribution are also algebraic fun
tions of the process valuex and, therefore, they correspond
some physically important phenomena. Moreover, it appe
that, for the normal case, the probability distribution co
verges to the stationary state algebraically with time. On
other hand, the singular case exhibits even slower con
gence to the limiting distribution, like 1/lnt. This particular
time dependence of the asymptotic distribution appears to
generic for all processes leading to the singular station
state among those we have considered.

Our findings demonstrate that, due to slow convergen
the stationary, time-independent state may not be reache
a reasonable time and in many practical applications the
solution must be taken into account. This conclusion is
vious for the singular case, but even for the normal one
speed of convergence can be arbitrarily slow if frequen
n(x) is characterized by a sufficiently high power indexb.
Moreover, we have demonstrated that also the choice of
tial distribution is crucial for the convergence speed. Con
quently, some KP would be effectively time dependent a
therefore, would mimic nonstationary processes, as soo
the observation time is not extremely long.

The fluctuation analysis confirms these conclusions.
have derived a general formula for the covariance and ca
lated the variance for both cases, Eqs.~14! and ~19!. In the
normal case, the variance converges witht0 to a constant
value in the same way as the CKE solution does to the
tionary limiting distribution. In the singular case, in turn, th
variance does not stabilize with time at a finite value—t
behavior is typical for stationary processes—but it falls
zero extremely slowly@see Eq.~32!#.

The singular solution corresponds to the case of diverg
normalization integral in Eq.~5!: nearx50, the frequency
n(x) falls to zero fast, compared toQ(x). Since the fre-
quency is small there, process values close tox50 are kept
for a long time. Conversely, ifuxu is large, the process fluc
4-6
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tuates rapidly, until eventuallyuxu becomes small. As a re
sult, the distribution is attracted to thex50 point.

In fact, the normal case~14!, for which a,b.0, pos-
sesses the singular stationary solutionP2(x) as well. How-
ever, the general solution~15! converges always toP1(x),
unless the initial distributionp(x,0)5d(x). Therefore,
choosing some combination of thed function and another
arbitrary function as the initial condition, one obtains a co
bination of P1(x) and P2(x) as limiting stationary distribu-
tion at t→`.

ACKNOWLEDGMENT

One of the authors~T.S.! was partly supported by KBN
Grant No. 2 P03 B 07218.

APPENDIX

We want to find the conditional probabilityP(x,tux0) that
after timet the value of the process becomesx, provided that
initially it was x0. First, we consider the case that there w
no jump at all. The probabilityP0(x,tux0) of such event
follows directly from the definition of the KP:

P0~x,t1Dtux0!5P0~x,tux0!@12n~x0!Dt#, ~A1!

whereDt is small. Therefore, we obtain the Poissonian d
tribution

P0~x,tux0!5exp@2n~x0!t#d~x2x0!. ~A2!

Next we calculate the probability that there was just o
jump during the timet. In order to calculate this probability
P1(x,tux0), we divide the time interval@0,t# into n subinter-
vals, such that 05t0,t1,•••,tn5t, wheren is large. The
length of subsequent subintervals isDt i5t i 112t i . Let us
assume that the jump occurred in thei th subinterval. There-
fore, to get the required probability we must multiply th
probability of this event by the probability that there was
jump in the other subintervals and, finally, take a sum o
all subintervals. The jump probability is given by the defin
tion of KP: n(x0)Q(x)Dt i . Taking the limitDt i→0, we can
change the sum over subintervals into the integral. Fina
we get

P1~x,tux0!5n~x0!Q~x!E
0

t

exp@2n~x0!s#

3exp@2n~x!~ t2s!#ds. ~A3!
ns

s
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Now we consider the general case ofk11 jumps: the
process leads fromx0 to x through the sequence of value
x1 , . . . ,xk . The probability of that sequence is given by th
following recurrence formula:

Pk11~x,x1 , . . . ,xk ,tux0!5n~xk!Q~x!

3E
0

t

Pk~x,x1 , . . . ,xk21 ,sux0!

3exp@~s2t !n~x!#ds. ~A4!

Taking into account all possible sequences of an arbitr
number of jumps, we get the expression for total conditio
probability in the form

P~x,tux0!5exp@2tn~x0!#d~x2x0!

1 (
k50

` E Pk~x,x1 , . . . ,xk21 ,tux0!dx1•••dxk .

~A5!

The probabilityPk in integral ~A5! involves, according to
Eq. ~A4!, thek-fold convolution. Therefore, it can be conve
niently handled in terms of Laplace transforms. Transfor
ing Eq. ~A5! term by term, we have

Lt@P~x,tux0!#5
d~x2x0!

s1n~x0!
1 (

k50

`
n~x0!

s1n~x0!

Q~x!

s1n~x!

3F E n~x8!Q~x8!

s1n~x8!
dx8G k

, ~A6!

where thek-fold integral has been factorized. After som
elementary algebra, we obtain the final formula for t
Laplace transform of the required conditional probability:

Lt@P~x,tux0!#5
d~x2x0!

s1n~x0!
1

n~x0!

s1n~x0!

Q~x!

s1n~x!

3
1

sE Q~x8!/@s1n~x8!#dx8

. ~A7!
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